pH-dependent stability and membrane interaction of the pore-forming domain of colicin A.

نویسندگان

  • A Muga
  • J M Gonzalez-Manas
  • J H Lakey
  • F Pattus
  • W K Surewicz
چکیده

Thermal stability of the pore-forming domain of colicin A was studied by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy. In the pH range between 8 and 5, the thermal denaturation of the protein in solution occurs at 66-69 degrees C and is characterized by the calorimetric enthalpy of approximately 90 kcal/M. At pH below 5, there is a rapid pH-dependent destabilization of the pore-forming domain resulting in the lowering of the midpoint denaturation temperature and a decrease in the calorimetric enthalpy of denaturation. Circular dichroism spectra in the near and far ultraviolet show that the thermotropic transition is associated with collapse of the native tertiary structure of the pore-forming domain, although a large proportion of the helical secondary structure remains preserved. The present data indicate some similarity also between acid-induced and temperature-induced denaturation of the pore-forming domain of colicin A. Association of the pore-forming domain with phospholipid vesicles of dioleoylphosphatidylglycerol results in total disappearance of the calorimetric transition, even at pH values as high as 7. Since lipid binding also induces collapse of the near ultraviolet circular dichroism spectrum, these data indicate that interaction with the membrane facilitates a conformational change within the pore-forming domain to a looser (denaturated-like) state. These findings are discussed in relation to the recent model (van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H., Pattus, F. (1991) Nature 354, 408-410) which postulates that a flexible "molten globule" state is an intermediate on the pathway to membrane insertion of colicin A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the role of lipid in colicin pore formation.

Insights into the protein-membrane interactions by which the C-terminal pore-forming domain of colicins inserts into membranes and forms voltage-gated channels, and the nature of the colicin channel, are provided by data on: (i) the flexible helix-elongated state of the colicin pore-forming domain in the fluid anionic membrane interfacial layer, the optimum anionic surface charge for channel fo...

متن کامل

Channel domain of colicin A modifies the dimeric organization of its immunity protein.

Proteins conferring immunity against pore-forming colicins are localized in the Escherichia coli inner membrane. Their protective effects are mediated by direct interaction with the C-terminal domain of their cognate colicins. Cai, the immunity protein protecting E. coli against colicin A, contains four cysteine residues. We report cysteine cross-linking experiments showing that Cai forms homod...

متن کامل

Colicin N Binds to the Periphery of Its Receptor and Translocator, Outer Membrane Protein F

Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trim...

متن کامل

Effect of pH on the pore forming activity and conformational stability of ostreolysin, a lipid raft-binding protein from the edible mushroom Pleurotus ostreatus.

Ostreolysin, a pore-forming protein from the edible oyster mushroom (Pleurotus ostreatus), is a member of the aegerolysin protein family, a novel group of small acidic proteins found in bacteria, molds, mushrooms, and plants. It binds to lipid rafts and interacts specifically with cholesterol-rich lipid domains. In this study, ostreolysin was classified as a single-domain all-beta-structured pr...

متن کامل

Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore.

The channel activity of colicin E1 was studied in planar lipid bilayers and liposomes. Colicin E1 pore-forming activity was found to depend on the curvature of the lipid bilayer, as judged by the effect on channel activity of curvature-modulating agents. In particular, the colicin-induced trans-membrane current was augmented by lysophosphatidylcholine and reduced by oleic acid, agents promoting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 3  شماره 

صفحات  -

تاریخ انتشار 1993